Structure Reports

Online
ISSN 1600-5368

Lai Jiang, ${ }^{a}$ Ping Wang, ${ }^{\text {a }}$ Dong-Jun Jiang ${ }^{\text {b }}$ and Wei-Ke Su ${ }^{\text {a* }}$
${ }^{\text {a }}$ Zhejiang Key Laboratory of Pharmaceutical Engineering, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ${ }^{\mathbf{b}}$ Zhejiang Shenghua Biological Co. Ltd, Zhejiang 313220, People's Republic of China

Correspondence e-mail: suweike@zjut.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.072$
$w R$ factor $=0.159$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(Z)-Ethyl 3-(1,3-benzodioxol-5-yl)-2-[(triphenyl-phosphoranylidene)amino]prop-2-enoate

The title compound, $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{P}$, contains a planar bicyclic 1,3-benzodioxole system, which is almost coplanar with the $\mathrm{CH}=\mathrm{CCOOEt}$ group. The molecule is a Z isomer, with the (triphenylphosphoranylidene)amino and 1,3-benzodioxole substituents on the same side of the double bond.

Comment

The use of the readily available iminophosphoranes provides a convenient synthetic route to nitrogen-containing heterocycles (Molina \& Vilaplana, 1994; Fresneda \& Molina, 2004). Thus, the title compound, (I), represents an intermediate in the preparation of imidazolinone (Ding et al., 2003; Yang et al., 2004). The structures of similar compounds with phenyl and p methoxyphenyl groups in place of the benzodioxole substituent have been reported recently (Huang et al., 2005; Ding et al., 2005).

(I)

The molecule of (I) (Fig. 1) is a Z isomer, with the (triphenylphosphoranylidene)amino and benzodioxole substituents on the same side of the $\mathrm{C} 8=\mathrm{C} 9$ double bond; the $\mathrm{C} 6-\mathrm{C} 8=\mathrm{C} 9-\mathrm{N} 1$ torsion angle is $1.3(5)^{\circ}$. The molecule of (I) contains an essentially planar bicyclic benzodioxole system, which is almost coplanar with the ethyl propenecarboxylate group (atoms $\mathrm{C} 1, \mathrm{O} 1, \mathrm{O} 2, \mathrm{C} 2-\mathrm{C} 10, \mathrm{O} 4, \mathrm{O} 3$ and C 11 are coplanar to within $0.08 \AA$). The planes of the phenyl rings C13-C18 (A), C19-C24 (B), and C25-C30 (C) belonging to the triphenylphosphine group form dihedral angles of 83.9 (1) $(A / B), 73.8(2)(A / C)$ and $52.5(1)^{\circ}(B / C)$.

Experimental

A solution of (Z)-ethyl 2-azido-3-(benzo[d][1,3]dioxol-5-yl)prop-2enoate $(10.44 \mathrm{~g}, 0.04 \mathrm{~mol})$ in dichloromethane (100 ml) was added

Received 6 December 2005
Accepted 3 January 2006

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
dropwise at room temperature under a nitrogen atmosphere to a solution of triphenylphosphine $(10.48 \mathrm{~g}, 0.04 \mathrm{~mol})$ in the same solvent $(50 \mathrm{ml})$. The reaction mixture was stirred for 4 h and then the solvent was removed under reduced pressure. The residue was recrystallized from dichloromethane-petroleum ether $(1: 2, v / v)$ to give the title compound ($13.08 \mathrm{~g}, 66 \%$) (Molina et al., 1993). Single crystals of (I) suitable for X-ray data collection (m.p. 434-435 K) were obtained by slow evaporation of an ethanol solution. Spectroscopic analysis: IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 2986, 1680, 1590, 1411, 1232; ${ }^{1} \mathrm{H}$ NMR (chloroform- d, δ, p.p.m.): 8.09-7.41 ($m, 17 \mathrm{H}), 6.75-6.70(m, 2 H), 5.91(s, 2 H), 3.85(q$, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.99(t, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{P} \\
& M_{r}=495.49 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.9346(10) \AA \\
& b=10.1613(12) \AA \\
& c=14.8002(16) \AA \\
& \alpha=71.628(2)^{\circ} \\
& \beta=89.328(2)^{\circ} \\
& \gamma=79.940(2)^{\circ} \\
& V=1254.2(2) \AA^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.312 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 1645 reflections
$\theta=2.3-24.2^{\circ}$
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.19 \times 0.14 \times 0.12 \mathrm{~mm}$

Data collection

Bruker APEX area-detector

 diffractometer
φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min }=0.970, T_{\max }=0.982$
6745 measured reflections

Refinement

Refinement on F^{2}
$w R\left(F^{2}\right)=0.159$
$S=1.09$
4459 reflections
326 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0518 P)^{2}\right. \\
&+0.6569 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.38 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

P1-N1	$1.573(3)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.426(4)$
$\mathrm{P} 1-\mathrm{C} 13$	$1.820(3)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.376(4)$
$\mathrm{P} 1-\mathrm{C} 19$	$1.811(3)$	$\mathrm{O} 3-\mathrm{C} 10$	$1.335(4)$
$\mathrm{P} 1-\mathrm{C} 25$	$1.816(3)$	$\mathrm{O} 3-\mathrm{C} 11$	$1.451(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.407(5)$	$\mathrm{O} 4-\mathrm{C} 10$	$1.209(3)$
$\mathrm{O} 1-\mathrm{C} 3$	$1.374(4)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.389(4)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 19$	$115.60(15)$	$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1$	$105.8(3)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 25$	$116.52(15)$	$\mathrm{C} 10-\mathrm{O} 3-\mathrm{C} 11$	$115.0(3)$
$\mathrm{C} 19-\mathrm{P} 1-\mathrm{C} 25$	$111.67(15)$	$\mathrm{C} 9-\mathrm{N} 1-\mathrm{P} 1$	$127.9(2)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 13$	$104.93(14)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$108.8(3)$
$\mathrm{C} 19-\mathrm{P} 1-\mathrm{C} 13$	$104.30(15)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	$124.0(3)$
$\mathrm{C} 25-\mathrm{P} 1-\mathrm{C} 13$	$101.70(15)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$118.8(3)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 1$	$105.8(3)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$117.2(3)$

The H atoms were positioned geometrically and allowed to ride on their parent atoms at $\mathrm{C}-\mathrm{H}$ distances of $0.93,0.97$ and $0.96 \AA$ for aromatic, methylene and methyl H atoms, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors thank the Commission of Science and Technology of Zhejiang Province (grant No. 2003 C24004) and the School of Chemistry and Materials Science, Wenzhou University, for supporting this work.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Ding, J.-C., Huang, X.-B., Wu, H.-Y., Liu, M.-C. \& Hu, M.-L. (2005). Acta Cryst. E61, o1259-o1260.
Ding, M.-W., Sun, Y., Liu, X.-P. \& Liu, Z.-J. (2003). Chin. J. Chem . 21, 577-580. Fresneda, P. M. \& Molina, P. (2004). Synlett, 1, 1-17.
Huang, X.-B., Liu, M.-C., Wu, H.-Y., Ding, J.-C. \& Hu, M.-L. (2005). Acta Cryst. E61, o280-o281.
Molina, P., Pastor, A. \& Vilaplana, M. J. (1993). Tetrahedron, 49, 7769-7778.
Molina, P. \& Vilaplana, M. J. (1994). Synthesis, 12, 1197-1218.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, F. L., Liu, Z. J., Huang, X. B. \& Ding, M. W. (2004). J. Heterocycl. Chem. 41, 77-83.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

