## organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Lai Jiang,<sup>a</sup> Ping Wang,<sup>a</sup> Dong-Jun Jiang<sup>b</sup> and Wei-Ke Su<sup>a</sup>\*

<sup>a</sup>Zhejiang Key Laboratory of Pharmaceutical Engineering, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and <sup>b</sup>Zhejiang Shenghua Biological Co. Ltd, Zhejiang 313220, People's Republic of China

Correspondence e-mail: suweike@zjut.edu.cn

#### **Key indicators**

Single-crystal X-ray study T = 298 KMean  $\sigma$ (C–C) = 0.006 Å R factor = 0.072 wR factor = 0.159 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# (Z)-Ethyl 3-(1,3-benzodioxol-5-yl)-2-[(triphenylphosphoranylidene)amino]prop-2-enoate

The title compound,  $C_{30}H_{26}NO_4P$ , contains a planar bicyclic 1,3-benzodioxole system, which is almost coplanar with the CH=CCOOEt group. The molecule is a Z isomer, with the (triphenylphosphoranylidene)amino and 1,3-benzodioxole substituents on the same side of the double bond.

Received 6 December 2005 Accepted 3 January 2006

## Comment

The use of the readily available iminophosphoranes provides a convenient synthetic route to nitrogen-containing heterocycles (Molina & Vilaplana, 1994; Fresneda & Molina, 2004). Thus, the title compound, (I), represents an intermediate in the preparation of imidazolinone (Ding *et al.*, 2003; Yang *et al.*, 2004). The structures of similar compounds with phenyl and *p*-methoxyphenyl groups in place of the benzodioxole substituent have been reported recently (Huang *et al.*, 2005; Ding *et al.*, 2005).



The molecule of (I) (Fig. 1) is a Z isomer, with the (triphenylphosphoranylidene)amino and benzodioxole substituents on the same side of the C8=C9 double bond; the C6-C8=C9-N1 torsion angle is 1.3 (5)°. The molecule of (I) contains an essentially planar bicyclic benzodioxole system, which is almost coplanar with the ethyl propenecarboxylate group (atoms C1, O1, O2, C2-C10, O4, O3 and C11 are coplanar to within 0.08 Å). The planes of the phenyl rings C13-C18 (*A*), C19-C24 (*B*), and C25-C30 (*C*) belonging to the triphenylphosphine group form dihedral angles of 83.9 (1) (*A*/*B*), 73.8 (2) (*A*/*C*) and 52.5 (1)° (*B*/*C*).

## Experimental

© 2006 International Union of Crystallography All rights reserved A solution of (Z)-ethyl 2-azido-3-(benzo[d][1,3]dioxol-5-yl)prop-2enoate (10.44 g, 0.04 mol) in dichloromethane (100 ml) was added



Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

dropwise at room temperature under a nitrogen atmosphere to a solution of triphenylphosphine (10.48 g, 0.04 mol) in the same solvent (50 ml). The reaction mixture was stirred for 4 h and then the solvent was removed under reduced pressure. The residue was recrystallized from dichloromethane–petroleum ether (1:2, v/v) to give the title compound (13.08 g, 66%) (Molina *et al.*, 1993). Single crystals of (I) suitable for X-ray data collection (m.p. 434–435 K) were obtained by slow evaporation of an ethanol solution. Spectroscopic analysis: IR (KBr, v, cm<sup>-1</sup>): 2986, 1680, 1590, 1411, 1232; <sup>1</sup>H NMR (chloroform-*d*,  $\delta$ , p.p.m.): 8.09–7.41 (*m*, 17H), 6.75–6.70 (*m*, 2H), 5.91 (*s*, 2H), 3.85 (*q*, 2H, J = 7.1 Hz), 0.99 (*t*, 3H, J = 7.1 Hz).

#### Crystal data

| $C_{30}H_{26}NO_4P$             | <i>Z</i> = 2                              |
|---------------------------------|-------------------------------------------|
| $M_r = 495.49$                  | $D_x = 1.312 \text{ Mg m}^{-3}$           |
| Triclinic, P1                   | Mo $K\alpha$ radiation                    |
| a = 8.9346 (10)  Å              | Cell parameters from 1645                 |
| b = 10.1613 (12)  Å             | reflections                               |
| c = 14.8002 (16)  Å             | $\theta = 2.3 - 24.2^{\circ}$             |
| $\alpha = 71.628 \ (2)^{\circ}$ | $\mu = 0.15 \text{ mm}^{-1}$              |
| $\beta = 89.328 \ (2)^{\circ}$  | T = 298 (2) K                             |
| $\gamma = 79.940 \ (2)^{\circ}$ | Block, colourless                         |
| V = 1254.2 (2) Å <sup>3</sup>   | $0.19 \times 0.14 \times 0.12 \text{ mm}$ |

#### Data collection

| Bruker APEX area-detector              | 4459 independent reflections           |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 3371 reflections with $I > 2\sigma(I)$ |
| $\varphi$ and $\omega$ scans           | $R_{\rm int} = 0.026$                  |
| Absorption correction: multi-scan      | $\theta_{\rm max} = 25.2^{\circ}$      |
| (SADABS; Bruker, 2002)                 | $h = -10 \rightarrow 10$               |
| $T_{\min} = 0.970, \ T_{\max} = 0.982$ | $k = -12 \rightarrow 9$                |
| 6745 measured reflections              | $l = -17 \rightarrow 17$               |

Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_0^2) + (0.0518P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.072$ | + 0.6569P]                                                 |
| $wR(F^2) = 0.159$               | where $P = (F_0^2 + 2F_c^2)/3$                             |
| S = 1.09                        | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 4459 reflections                | $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ \AA}^{-3}$  |
| 326 parameters                  | $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$ |
| H-atom parameters constrained   |                                                            |

 Table 1

 Selected geometric parameters (Å,  $^{\circ}$ ).

| P1-N1      | 1.573 (3)   | O2-C1      | 1.426 (4) |
|------------|-------------|------------|-----------|
| P1-C13     | 1.820 (3)   | O2-C2      | 1.376 (4) |
| P1-C19     | 1.811 (3)   | O3-C10     | 1.335 (4) |
| P1-C25     | 1.816 (3)   | O3-C11     | 1.451 (4) |
| O1-C1      | 1.407 (5)   | O4-C10     | 1.209 (3) |
| O1-C3      | 1.374 (4)   | N1-C9      | 1.389 (4) |
|            |             |            |           |
| N1-P1-C19  | 115.60 (15) | C2-O2-C1   | 105.8 (3) |
| N1-P1-C25  | 116.52 (15) | C10-O3-C11 | 115.0 (3) |
| C19-P1-C25 | 111.67 (15) | C9-N1-P1   | 127.9 (2) |
| N1-P1-C13  | 104.93 (14) | O1-C1-O2   | 108.8 (3) |
| C19-P1-C13 | 104.30 (15) | C8-C9-N1   | 124.0 (3) |
| C25-P1-C13 | 101.70 (15) | C8-C9-C10  | 118.8 (3) |
| C3-O1-C1   | 105.8 (3)   | N1-C9-C10  | 117.2 (3) |
|            |             |            |           |

The H atoms were positioned geometrically and allowed to ride on their parent atoms at C—H distances of 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and with  $U_{iso}(H) = 1.2U_{ea}(C)$ , or  $1.5U_{ea}(C)$  for methyl H atoms.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

The authors thank the Commission of Science and Technology of Zhejiang Province (grant No. 2003 C24004) and the School of Chemistry and Materials Science, Wenzhou University, for supporting this work.

### References

- Bruker (2002). *SADABS* (Version 2.03), *SAINT* (Version 6.02), *SMART* (Version 5.62) and *SHELXTL* (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, J.-C., Huang, X.-B., Wu, H.-Y., Liu, M.-C. & Hu, M.-L. (2005). Acta Cryst. E61, o1259–o1260.
- Ding, M.-W., Sun, Y., Liu, X.-P. & Liu, Z.-J. (2003). *Chin. J. Chem*. **21**, 577–580. Fresneda, P. M. & Molina, P. (2004). *Synlett*, **1**, 1–17.
- Huang, X.-B., Liu, M.-C., Wu, H.-Y., Ding, J.-C. & Hu, M.-L. (2005). Acta Cryst. E61, 0280–0281.
- Molina, P., Pastor, A. & Vilaplana, M. J. (1993). Tetrahedron, 49, 7769-7778.
- Molina, P. & Vilaplana, M. J. (1994). Synthesis, 12, 1197-1218.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yang, F. L., Liu, Z. J., Huang, X. B. & Ding, M. W. (2004). J. Heterocycl. Chem. 41, 77–83.